Molecular Dynamics and Umbrella Sampling Simulations of 8-Arg-Vasopressin

Elke Haensele^{1,2}, Lee Banting³, Timothy Clark^{2,4}

¹Faculty of Science, Pharmacy and Biomedical Sciences, ²Centre for Molecular Design, University of Portsmouth, King Henry Building, Portsmouth PO1 2DY, United Kingdom; ³Faculty of Science, Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, Portsmouth PO1 2DT, United Kingdom; ⁴Computer-Chemie-Centrum and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052 Erlangen, Germany

A long-term (5 μ s) molecular-dynamics simulation of 8-Arg-Vasopressin was performed in aqueous solution at 300 K. Two main conformational ring states were identified *via* DASH [1] analysis: **DRS**_{open}, a stretched, *open* conformation with no intramolecular hydrogen bonds in the ring; and **DRS**_{saddle}, a folded, *saddle*-like conformation with strong hydrogen bonding interactions between the carbonyl oxygen of the ring residue Tyr² and the amide protons of the ring residues Asn⁵ and Cys⁶. Only one transition between both main states was observed during the 5 μ s simulation run. In addition to these two main states, a sparsely populated DASH state, **DRS**_{intermediate}, was found with mixed conformational characteristics of the two main states. Umbrella Sampling [2, 3], post-processed with WHAM [4-6], was used to estimate the free energy profile for the conformational change from *open* to *saddle* and led to a reaction path *via* **DRS**_{intermediate} (see video clip [7]), with barrier heights of 7.7 kcal mol⁻¹ and 14.2 kcal mol⁻¹ and a free energy difference between the *open* and *saddle* states of 4.0 kcal mol⁻¹.

8-Arg-Vasopressin (AVP) is a neurohypophyseal hormone with a wide range of endocrinological and neurological functions, e.g. water homeostasis, blood pressure regulation and mediation of social and sexual behavior. Main structural characteristics are a 6-residue ring closed via disulphide bridging, and a α -amidated 3-residue tail. Figure: Structure and backbone conformations (blue: *open*; red: *saddle*; rose: *intermediate*; cartoon: backbones; sticks: disulphide bridges; not shown: sidechains)

- [1] D.W. Salt, B.D. Hudson, L. Banting, et al., J. Med. Chem., 2005, 48, 3214-3220.
- [2] G.M. Torrie and J.P. Valleau, J. Comput. Phys., 1977, 23, 187-199.
- [3] G.M. Torrie and J.P. Valleau, Chem. Phys. Lett., 1974, 28, 578-581.
- [4] S. Kumar, J.M. Rosenberg, D. Bouzida, et al., J. Comput. Chem., 1992, 13, 1011-1021.
- [5] M. Souaille and B.T. Roux, Comput. Phys. Commun. , 2001, 135, 40-57.
- [6] A. Grossfield, WHAM, Version 2.0.1, 2000.
- [7] <u>https://www.youtube.com/watch?v=z0aRtSxNQ21</u>